On Graphs whose Spread is Maximal

نویسندگان

  • T. Aleksić
  • M. Petrović
چکیده

A graph’s spread is defined as the difference between the largest eigenvalue and the least eigenvalue of the graph’s adjacency matrix. Characterizing a graph with maximal spread is still a difficult problem. If we restrict the discussion to some classes of connected graphs of a prescribed order and size, it simplifies the problem and it may allow us to solve it. Here, we discuss some results on graphs whose spread is maximal in certain classes of graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

On the saturation number of graphs

Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...

متن کامل

The maximal total irregularity of some connected graphs

The total irregularity of a graph G is defined as 〖irr〗_t (G)=1/2 ∑_(u,v∈V(G))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈V(G). In this paper by using the Gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.

متن کامل

Line graphs associated to the maximal graph

Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...

متن کامل

Maximal independent sets in bipartite graphs obtained from Boolean lattices

Attempts to enumeratemaximal antichains in Boolean lattices give rise to problems involving maximal independent sets in bipartite graphs whose vertex sets are comprised of adjacent levels of the lattice and whose edges correspond to proper containment. In this paper, we find bounds on the numbers of maximal independent sets in these graphs. © 2010 Elsevier Ltd. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015